References

  1. Alam NM, Mills WC IV, Wong AA, et al. A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech. 2015;8(7):701-710.
  2. Ames A III, Li YY, Heher EC, Kimble CR. Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci. 1992;12(3):840-853.
  3. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133-1145.
  4. Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol. 2013;61(6):599-610.
  5. Befroy DE, Rothman DL, Petersen KF, Shulman GI. P-Magnetization transfer magnetic resonance spectroscopy measurements of in vivo metabolism. Diabetes. 2012;61:2669-2678.
  6. Birk AV, Liu S, Soong Y, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24(8):1250-1261.
  7. Blei ML, Conley KE, Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol. 1993;465:203-222.
  8. Brown DA, Hale SL, Baines CP, et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide Bendavia. J Cardiovasc Pharmacol Ther. 2014;19(1):121-132.
  9. Brown DA, Sabbah HN, Shaikh SR. Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. Pharmacol Ther. 2013;140(3):258-266.
  10. Cai M, Li J, Lin S, et al. Mitochondria-targeted antioxidant peptide SS31 protects cultured human lens epithelial cells against oxidative stress. Curr Eye Res. 2015;40(8):822-829.
  11. Carelli V, La Morgia C, Sadun AA. Mitochondrial dysfunction in optic neuropathies: animal models and therapeutic options. Curr Opin Neurol. 2013;26(1):52-58.
  12. Carreras MC, Franco MC, Peralta JG, Poderoso JJ. Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Molecular Aspects Med. 2004:25 (1-2): 125-139.
  13. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527-605.
  14. Chen M, Liu B, Gao Q, Zhuo Y, Ge J. Mitochondria-targeted peptide MTP-131 alleviates mitochondrial dysfunction and oxidative damage in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2011;52(10):7027-7037.
  15. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014;2014:238463.
  16. Cousins SC. The rationale for mitochondrial targeted therapeutics in dry AMD. Paper presented at: Angiogenesis, Exudation, and Degeneration 2015; February 7, 2015; Miami, FL.
  17. Cousins SW. Role of mitochondrial dysfunction in dry age-related macular degeneration. Retina Today. June 11, 2015:83-85.
  18. Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res. 2012;110(8):1109-1124.
  19. Daubert MA, Yow E, Dunn G, et al. Effects of a novel tetrapeptide in heart failure with reduced ejection fraction: a phase I randomized, placebo-controlled trial of elamipretide. ACC 64th Annual Scientific Session and Expo; March 16, 2016; Poster 101.
  20. Eirin A, Ebrahimi B, Zhang X, et al. Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovasc Res. 2014;103(4):461-472.
  21. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Rev. 2002;3(5):599-622.
  22. Gibson CM, Giugliano RP, Kloner RA, et al. EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J. 2016;37(16):1296-1303.
  23. Huang J, Li X, Li M, et al. Mitochondria-targeted antioxidant peptide SS31 protects the retinas of diabetic rats. Curr Mol Med. 2013;13(6):935-945.
  24. Hultman E, Sjöholm H. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J Physiol. 1983;345:525-532.
  25. James AM, Murphy MP. How mitochondrial damage affects cell function. J Biomed Sci. 2002;9(5-6):475-487.
  26. Kloner RA, Hale SL, Dai W, et al. Reduction of ischemia/reperfusion injury with Bendavia, a mitochondria-targeting cytoprotective peptide. J Am Heart Assoc. 2012;1(3):e001644.
  27. Lei H, Ugurbil K, Chen W. Measurement of unidirectional Pi to ATP flux in human visual cortex at 7 T by using in vivo 31P magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 2003;100(24):14409-14414.
  28. LHON 101. Available at: http://www.lhon.org/lhon/LHON_101.html. Accessed April 22, 2016.
  29. Li J, Chen X, Xiao W, et al. Mitochondria-targeted antioxidant peptide SS31 attenuates high glucose-induced injury on human retinal endothelial cells. Biochem Biophys Res Commun. 2011;404(1):349-356.
  30. Manfredi AA, Rovere-Querini P. The mitochondrion — a Trojan horse that kicks off inflammation? N Engl J Med. 2010;362(22):2132-2134.
  31. Muscular Dystrophy Association (MDA). Mitochondrial myopathies. http://mda.org/disease/mitochondrial-myopathies/overview. Accessed April 22, 2016.
  32. National Institutes of Health National Eye Institute. Facts about diabetic retinopathy. http://www.nei.nih.gov/health/diabetic/retinopathy.asp. Accessed July 22, 2014.
  33. National Institutes of Health. Leber hereditary optic neuropathy. http://ghr.nlm.nih.gov/condition/leber-hereditary-optic-neuropathy. Accessed April 22, 2016.
  34. Neubauer S. The failing heart—an engine out of fuel. N Engl J Med. 2007;356(11):1140-1151.
  35. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787-790.
  36. Okawa H, Sampath AP, Laughlin SB, Fain GL. ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol. 2008;18(24):1917-1921.
  37. Pfeffer G, Chinnery PF. Diagnosis and treatment of mitochondrial myopathies. Ann Med. 2013;45(1):4-16.
  38. Ross B, Freeman D, Chan L. Contributions of nuclear magnetic resonance to renal biochemistry. Kidney Int. 1986;29(1):131-141.
  39. Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail. 2016;9(2):e002206.
  40. Siegel MP, Kruse SE, Percival JM, et al. Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell. 2013;12(5):763-771.
  41. Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993;215(2):213-219.
  42. Sloan RC, Moukdar F, Frasier CR, et al. Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. J Mol Cell Cardiol. 2012;52(5):1009-1018.
  43. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093-1129.
  44. Weinberg JM. Mitochondrial biogenesis in kidney disease. J Am Soc Nephrol. 2011;22(3):431-436.
  45. Werkmeister RM, Schmidl D, Aschinger G, et al. Retinal oxygen extraction in humans. Sci Rep. 2015;5:15763.
  46. Wong-Riley MT. Energy metabolism of the visual system. Eye Brain. 2010;2:99-116.
  47. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al; Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012 Mar; 35 (3):556-64.
  48. Yu-Wai-Mana P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(2):81-114.

ATP Chart References >